
sep Documentation
Release 1.1.1

Kyle Barbary

Jan 06, 2021

Contents

1 About 3

2 Installation 5

3 Usage Guide 7

4 Contributing 31

5 License and Citation 33

Index 35

i

ii

sep Documentation, Release 1.1.1

Python library for Source Extraction and Photometry

Contents 1

sep Documentation, Release 1.1.1

2 Contents

CHAPTER 1

About

Source Extractor (Bertin & Arnouts 1996) is a widely used command-line program for segmentation and analysis
of astronomical images. It reads in FITS format files, performs a configurable series of tasks, including background
estimation, source detection, deblending and a wide array of source measurements, and finally outputs a FITS format
catalog file.

While Source Extractor is highly useful, the fact that it can only be used as an executable can limit its applicability or
lead to awkward workflows. There is often a desire to have programmatic access to perform one or more of the above
tasks on in-memory images as part of a larger custom analysis.

SEP makes the core algorithms of Source Extractor available as a library of stand-alone functions and classes.
These operate directly on in-memory arrays (no FITS files or configuration files). The code is derived from the Source
Extractor code base (written in C) and aims to produce results compatible with Source Extractor whenever possible.
SEP consists of a C library with no dependencies outside the standard library, and a Python module that wraps the C
library in a Pythonic API. The Python wrapper operates on NumPy arrays with NumPy as its only dependency. See
below for language-specfic build and usage instructions.

Some features:

• spatially variable background and noise estimation

• source extraction, with on-the-fly convolution and source deblending

• circular and elliptical aperture photometry

• fast: implemented in C with Python bindings via Cython

Additional features not in Source Extractor:

• Optimized matched filter for variable noise in source extraction.

• Circular annulus and elliptical annulus aperture photometry functions.

• Local background subtraction in shape consistent with aperture in aperture photometry functions.

• Exact pixel overlap mode in all aperture photometry functions.

• Masking of elliptical regions on images.

3

http://www.astromatic.net/software/sextractor

sep Documentation, Release 1.1.1

4 Chapter 1. About

CHAPTER 2

Installation

2.1 with conda

SEP can be installed with conda from the conda-forge channel:

conda install -c conda-forge sep

2.2 with pip

SEP can also be installed with pip. After ensuring that numpy is installed, run

pip install sep

If you get an error about permissions, you are probably using your system Python. In this case, I recommend using
pip’s “user install” option to install sep into your user directory

pip install --user sep

Do not install sep or other third-party Python packages using sudo unless you are fully aware of the risks.

5

https://pip.pypa.io
https://pip.pypa.io/en/latest/user_guide/#user-installs

sep Documentation, Release 1.1.1

6 Chapter 2. Installation

CHAPTER 3

Usage Guide

3.1 Tutorial

This tutorial shows the basic steps of using SEP to detect objects in an image and perform some basic aperture
photometry.

Here, we use the fitsio package, just to read the test image, but you can also use astropy.io.fits for this
purpose (or any other FITS reader).

[1]: import numpy as np
import sep

[2]: # additional setup for reading the test image and displaying plots
import fitsio
import matplotlib.pyplot as plt
from matplotlib import rcParams

%matplotlib inline

rcParams['figure.figsize'] = [10., 8.]

Matplotlib is building the font cache; this may take a moment.

First, we’ll read an example image from a FITS file and display it, just to show what we’re dealing with. The example
image is just 256 x 256 pixels.

[3]: # read image into standard 2-d numpy array
data = fitsio.read("../data/image.fits")

[4]: # show the image
m, s = np.mean(data), np.std(data)
plt.imshow(data, interpolation='nearest', cmap='gray', vmin=m-s, vmax=m+s, origin=
→˓'lower')
plt.colorbar();

7

sep Documentation, Release 1.1.1

[4]: <matplotlib.colorbar.Colorbar at 0x7f2b1aeeca10>

3.1.1 Background subtraction

Most optical/IR data must be background subtracted before sources can be detected. In SEP, background estimation
and source detection are two separate steps.

[5]: # measure a spatially varying background on the image
bkg = sep.Background(data)

There are various options for controlling the box size used in estimating the background. It is also possible to mask
pixels. For example:

bkg = sep.Background(data, mask=mask, bw=64, bh=64, fw=3, fh=3)

See the reference section for descriptions of these parameters.

This returns an Background object that holds information on the spatially varying background and spatially varying
background noise level. We can now do various things with this Background object:

[6]: # get a "global" mean and noise of the image background:
print(bkg.globalback)
print(bkg.globalrms)

8 Chapter 3. Usage Guide

sep Documentation, Release 1.1.1

6852.04931640625
65.46165466308594

[7]: # evaluate background as 2-d array, same size as original image
bkg_image = bkg.back()
bkg_image = np.array(bkg) # equivalent to above

[8]: # show the background
plt.imshow(bkg_image, interpolation='nearest', cmap='gray', origin='lower')
plt.colorbar();

[8]: <matplotlib.colorbar.Colorbar at 0x7f2b1add5ed0>

[9]: # evaluate the background noise as 2-d array, same size as original image
bkg_rms = bkg.rms()

[10]: # show the background noise
plt.imshow(bkg_rms, interpolation='nearest', cmap='gray', origin='lower')
plt.colorbar();

[10]: <matplotlib.colorbar.Colorbar at 0x7f2b1ad22350>

3.1. Tutorial 9

sep Documentation, Release 1.1.1

[11]: # subtract the background
data_sub = data - bkg

One can also subtract the background from the data array in-place by doing bkg.subfrom(data).

Warning:

If the data array is not background-subtracted or the threshold is too low, you will tend to get one giant object when
you run object detection using sep.extract. Or, more likely, an exception will be raised due to exceeding the
internal memory constraints of the sep.extract function.

3.1.2 Object detection

Now that we’ve subtracted the background, we can run object detection on the background-subtracted data. You can
see the background noise level is pretty flat. So here we’re setting the detection threshold to be a constant value of
1.5𝜎 where 𝜎 is the global background RMS.

[12]: objects = sep.extract(data_sub, 1.5, err=bkg.globalrms)

sep.extract has many options for controlling detection threshold, pixel masking, filtering, and object deblending.
See the reference documentation for details.

10 Chapter 3. Usage Guide

sep Documentation, Release 1.1.1

objects is a NumPy structured array with many fields.

[13]: # how many objects were detected
len(objects)

[13]: 68

objects['x'] and objects['y'] will give the centroid coordinates of the objects. Just to check where the
detected objects are, we’ll over-plot the object coordinates with some basic shape parameters on the image:

[14]: from matplotlib.patches import Ellipse

plot background-subtracted image
fig, ax = plt.subplots()
m, s = np.mean(data_sub), np.std(data_sub)
im = ax.imshow(data_sub, interpolation='nearest', cmap='gray',

vmin=m-s, vmax=m+s, origin='lower')

plot an ellipse for each object
for i in range(len(objects)):

e = Ellipse(xy=(objects['x'][i], objects['y'][i]),
width=6*objects['a'][i],
height=6*objects['b'][i],
angle=objects['theta'][i] * 180. / np.pi)

e.set_facecolor('none')
e.set_edgecolor('red')
ax.add_artist(e)

3.1. Tutorial 11

sep Documentation, Release 1.1.1

objects has many other fields, giving information such as second moments, and peak pixel positions and values.
See the reference documentation for sep.extract for descriptions of these fields. You can see the available fields:

[15]: # available fields
objects.dtype.names

[15]: ('thresh',
'npix',
'tnpix',
'xmin',
'xmax',
'ymin',
'ymax',
'x',
'y',
'x2',
'y2',
'xy',
'errx2',
'erry2',
'errxy',
'a',
'b',
'theta',
'cxx',

(continues on next page)

12 Chapter 3. Usage Guide

sep Documentation, Release 1.1.1

(continued from previous page)

'cyy',
'cxy',
'cflux',
'flux',
'cpeak',
'peak',
'xcpeak',
'ycpeak',
'xpeak',
'ypeak',
'flag')

3.1.3 Aperture photometry

Finally, we’ll perform simple circular aperture photometry with a 3 pixel radius at the locations of the objects:

[16]: flux, fluxerr, flag = sep.sum_circle(data_sub, objects['x'], objects['y'],
3.0, err=bkg.globalrms, gain=1.0)

flux, fluxerr and flag are all 1-d arrays with one entry per object.

[17]: # show the first 10 objects results:
for i in range(10):

print("object {:d}: flux = {:f} +/- {:f}".format(i, flux[i], fluxerr[i]))

object 0: flux = 2249.173164 +/- 291.027422
object 1: flux = 3092.230000 +/- 291.591821
object 2: flux = 5949.882168 +/- 356.561539
object 3: flux = 1851.435000 +/- 295.028419
object 4: flux = 72736.400605 +/- 440.171830
object 5: flux = 3860.762324 +/- 352.162684
object 6: flux = 6418.924336 +/- 357.458504
object 7: flux = 2210.745605 +/- 350.790787
object 8: flux = 2741.598848 +/- 352.277244
object 9: flux = 20916.877324 +/- 376.965683

3.1.4 Finally a brief word on byte order

Note:

If you are using SEP to analyze data read from FITS files with astropy.io.fits you may see an error message such as:

ValueError: Input array with dtype '>f4' has non-native byte order.
Only native byte order arrays are supported. To change the byte
order of the array 'data', do 'data = data.byteswap().newbyteorder()'

It is usually easiest to do this byte-swap operation directly after reading the array from the FITS file. You can even
perform the byte swap in-place by doing

>>> data = data.byteswap(inplace=True).newbyteorder()

If you do this in-place operation, ensure that there are no other references to data, as they will be rendered nonsensi-
cal.

3.1. Tutorial 13

http://astropy.readthedocs.org/en/stable/io/fits/

sep Documentation, Release 1.1.1

For the interested reader, this byteswap operation is necessary because astropy.io.fits always returns big-endian byte
order arrays, even on little-endian machines. For more on this, see

3.2 Matched Filter (Convolution)

For source detection, SEP supports using a matched filter, which can give the optimal detection signal-to-noise for
objects with some known shape. This is controlled using the filter_kernel keyword in sep.extract. For
example:

kernel = np.array([[1., 2., 3., 2., 1.],
[2., 3., 5., 3., 2.],
[3., 5., 8., 5., 3.],
[2., 3., 5., 3., 2.],
[1., 2., 3., 2., 1.]])

objects = sep.extract(data, thresh, filter_kernel=kernel)

If filter_kernel is not specified, a default 3-by-3 kernel is used. To disable filtering entirely, specify
filter_kernel=None.

What array should be used for filter_kernel? It should be approximately the shape of the objects you are trying
to detect. For example, to optimize for the detection of point sources, filter_kernel should be set to shape of the
point spread function (PSF) in the data. For galaxy detection, a larger kernel could be used. In practice, anything that
is roughly the shape of the desired object works well since the main goal is to negate the effects of background noise,
and a reasonable estimate is good enough.

3.2.1 Correct treatment in the presence of variable noise

In Source Extractor, the matched filter is implemented assuming there is equal noise across all pixels in the kernel.
The matched filter then simplifies to a convolution of the data with the kernel. In sep.extract, this is also the
behavior when there is constant noise (when err is not specified).

In the presence of independent noise on each pixel, SEP uses a full matched filter implementation that correctly
accounts for the noise in each pixel. This is not available in Source Extractor. Some benefits of this method are that
detector sensitivity can be taken into account and edge effects are handled gracefully. For example, suppose we have
an image with noise that is higher in one region than another. This can often occur when coadding images:

create a small image with higher noise in the upper left
n = 16
X, Y = np.meshgrid(np.arange(n), np.arange(n))
mask = Y > X
error = np.ones((n, n))
error[mask] = 4.0
data = error * np.random.normal(size=(n, n))

add source to middle of data
source = 3.0 * np.array([[1., 2., 1.],

[2., 4., 2.],
[1., 2., 1.]])

m = n // 2 - 1
data[m:m+3, m:m+3] += source

plt.imshow(data, interpolation='nearest', origin='lower', cmap='bone')

14 Chapter 3. Usage Guide

sep Documentation, Release 1.1.1

Specifying filter_type='conv' will use simple convolution, matching the behavior of Source Extractor. The
object is not detected:

>>> objects = sep.extract(data, 3.0, err=error, filter_type='conv')
>>> len(objects)
0

Setting filter_type='matched' (the default) correctly deweights the noisier pixels around the source and de-
tects the object:

>>> objects = sep.extract(data, 3.0, err=error, filter_type='matched')
>>> len(objects)
1

3.2.2 Derivation of the matched filter formula

Assume that we have an image containing a single point source. This produces a signal with PSF 𝑆𝑖 and noise 𝑁𝑖 at
each pixel indexed by 𝑖. Then the measured image data 𝐷𝑖 (i.e. our pixel values) is given by:

𝐷𝑖 = 𝑆𝑖 +𝑁𝑖

Then we want to apply a linear transformation 𝑇𝑖 which gives an output 𝑌 :

𝑌 =
∑︁
𝑖

𝑇𝑖𝐷𝑖 = 𝑇𝑇𝐷

We use matrix notation from here on and drop the explicit sums. Our objective is to find the transformation 𝑇𝑖 which
maximizes the signal-to-noise ratio 𝑆𝑁𝑅.

𝑆𝑁𝑅2 =
(𝑇𝑇𝑆)2

𝐸[(𝑇𝑇𝑁)2]

3.2. Matched Filter (Convolution) 15

sep Documentation, Release 1.1.1

We can expand the denominator as:

𝐸[(𝑇𝑇𝑁)2] = 𝐸[(𝑇𝑇𝑁)(𝑁𝑇𝑇)] = 𝑇𝑇 · 𝐸[𝑁𝑁𝑇] · 𝑇 = 𝑇𝑇𝐶𝑇

Where 𝐶𝑖𝑘 is the covariance of the noise between pixels 𝑖 and 𝑘. Now using the Cauchy-Schwarz inequality on the
numerator:

(𝑇𝑇𝑆)2 = (𝑇𝑇𝐶1/2𝐶−1/2𝑆)2 ≤ (𝑇𝑇𝐶1/2)2(𝐶−1/2𝑆)2 = (𝑇𝑇𝐶𝑇)(𝑆𝑇𝐶−1𝑆)

since 𝐶𝑇 = 𝐶. The signal-to-noise ratio is therefore bounded by:

𝑆𝑁𝑅2 ≤ (𝑇𝑇𝐶𝑇)(𝑆𝑇𝐶−1𝑆)

(𝑇𝑇𝐶𝑇)

𝑆𝑁𝑅2 ≤ 𝑆𝑇𝐶−1𝑆

Choosing 𝑇 = 𝛼𝐶−1𝑆 where 𝛼 is an arbitrary normalization constant, we get equality. Hence this choise of 𝑇 is the
optimal linear tranformation. We normalize this linear transformation so that if there is no signal and only noise, we
get an expected signal-to-noise ratio of 1. With this definition, the output 𝑆𝑁𝑅 represents the number of standard
deviations above the background. This gives:

𝐸[(𝑇𝑇𝑁)2] = 𝑇𝑇𝐶𝑇 = 𝛼2𝑆𝑇𝐶−1𝐶𝐶−1𝑆 = 𝛼2𝑆𝑇𝐶−1𝑆 = 1

𝛼 =
1√

𝑆𝑇𝐶−1𝑆

Putting everything together, our normalized linear transformation is:

𝑇 =
𝐶−1𝑆√
𝑆𝑇𝐶−1𝑆

And the optimal signal-to-noise is given in terms of the known variables as:

𝑆𝑁𝑅 =
𝑆𝑇𝐶−1𝐷√
𝑆𝑇𝐶−1𝑆

3.3 Aperture photometry

There are four aperture functions available:

Function Sums data within. . .
sep.sum_circle circle(s)
sep.sum_circann circular annulus/annuli
sep.sum_ellipse ellipse(s)
sep.sum_ellipann elliptical annulus/annuli

The follow examples demonstrate options for circular aperture photometry. The other functions behave similarly.

sum flux in circles of radius=3.0
flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0)

x, y and r can be arrays and obey numpy broadcasting rules.
Here, r is an array instead of a single number:
flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'],

3.0 * np.ones(len(objs)))

use a different subpixel sampling (default is 5; 0 means "exact")
flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0,

subpix=0)

16 Chapter 3. Usage Guide

sep Documentation, Release 1.1.1

Error calculation

In the default modes illustrated above, the uncertainty fluxerr is not calculated and values of 0 are simply returned.
The uncertainty can be flexibly and efficiently calculated, depending on the characteristics of your data. The presence
of an err or var keyword indicates a per-pixel noise, while the presense of a gain keyword indicates that the
Poisson uncertainty on the total sum should be included. Some illustrative examples:

Specify a per-pixel "background" error and a gain. This is suitable
when the data have been background subtracted.
flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0,

err=bkg.globalrms, gain=1.0)

Variance can be passed instead of error, with identical results.
flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0,

var=bkg.globalrms**2, gain=1.0)

Error or variance can be arrays, indicating that the background error
is variable.
bkgrms = bkg.rms() # array, same shape as data
flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0,

err=bkgrms, gain=1.0)

If your uncertainty array already includes Poisson noise from the object,
leave gain as None (default):
flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0,

err=error_array)

If your data represent raw counts (it is not background-subtracted),
set only gain to get the poisson error:
flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0,

gain=1.0)

The error is calculated as

𝜎2
𝐹 =

∑︁
𝑖

𝜎2
𝑖 + 𝐹/𝑔

where the sum is over pixels in the aperture, 𝜎𝑖 is the noise in each pixel, 𝐹 is the sum in the aperture and 𝑔 is the gain.
The last term is not added if gain is None.

Masking

Apply a mask (same shape as data). Pixels where the mask is True are “corrected” to the average value within the
aperture.

flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0,
mask=mask)

Local background subtraction

The sum_circle and sum_ellipse functions have options for performing local background subtraction. For
example, to subtract the background calculated in an annulus between 6 and 8 pixel radius:

flux, fluxerr, flag = sep.sum_circle(data, objs['x'], objs['y'], 3.0,
mask=mask, bkgann=(6., 8.))

Pixels in the background annulus are not subsampled and any masked pixels in the annulus are completely igored
rather than corrected. The inner and outer radii can also be arrays. The error in the background is included in the
reported error.

3.3. Aperture photometry 17

https://docs.python.org/3/library/constants.html#None

sep Documentation, Release 1.1.1

3.3.1 Equivalent of FLUX_AUTO (e.g., MAG_AUTO) in Source Extractor

This is a two-step process. First we calculate the Kron radius for each object, then we perform elliptical aperture
photometry within that radius:

kronrad, krflag = sep.kron_radius(data, x, y, a, b, theta, 6.0)
flux, fluxerr, flag = sep.sum_ellipse(data, x, y, a, b, theta, 2.5*kronrad,

subpix=1)
flag |= krflag # combine flags into 'flag'

This specific example is the equilvalent of setting PHOT_AUTOPARAMS 2.5, 0.0 in Source Extractor (note the
2.5 in the argument to sep.sum_ellipse). The second Source Extractor parameter is a minimum diameter. To
replicate Source Extractor behavior for non-zero values of the minimum diameter, one would put in logic to use
circular aperture photometry if the Kron radius is too small. For example:

r_min = 1.75 # minimum diameter = 3.5
use_circle = kronrad * np.sqrt(a * b) < r_min
cflux, cfluxerr, cflag = sep.sum_circle(data, x[use_circle], y[use_circle],

r_min, subpix=1)
flux[use_circle] = cflux
fluxerr[use_circle] = cfluxerr
flag[use_circle] = cflag

3.3.2 Equivalent of FLUX_RADIUS in Source Extractor

In Source Extractor, the FLUX_RADIUS parameter gives the radius of a circle enclosing a desired fraction of the
total flux. For example, with the setting PHOT_FLUXFRAC 0.5, FLUX_RADIUS will give the radius of a circle
containing half the “total flux” of the object. For the definition of “total flux”, Source Extractor uses its measurement
of FLUX_AUTO, which is taken through an elliptical aperture (see above). Thus, with the setting PHOT_FLUXFRAC
1.0, you would find the circle containing the same flux as whatever ellipse Source Extractor used for FLUX_AUTO.

Given a previous calculation of flux as above, calculate the radius for a flux fraction of 0.5:

r, flag = sep.flux_radius(data, objs['x'], objs['y'], 6.*objs['a'], 0.5,
normflux=flux, subpix=5)

And for multiple flux fractions:

r, flag = sep.flux_radius(data, objs['x'], objs['y'], 6.*objs['a'],
[0.5, 0.6], normflux=flux, subpix=5)

3.3.3 Equivalent of XWIN_IMAGE, YWIN_IMAGE in Source Extractor

Source Extractor’s XWIN_IMAGE, YWIN_IMAGE parameters can be used for more accurate object centroids than
the default X_IMAGE, Y_IMAGE. Here, the winpos function provides this behavior. To match Source Extractor ex-
actly, the right sig parameter (giving a description of the effective width) must be used for each object. Source Extrac-
tor uses 2. / 2.35 * (half-light radius) where the half-light radius is calculated using flux_radius
with a fraction of 0.5 and a normalizing flux of FLUX_AUTO. The equivalent here is:

sig = 2. / 2.35 * r # r from sep.flux_radius() above, with fluxfrac = 0.5
xwin, ywin, flag = sep.winpos(data, objs['x'], objs['y'], sig)

18 Chapter 3. Usage Guide

sep Documentation, Release 1.1.1

3.3.4 Segmentation-masked image measurements

SourceExtractor provides a mechanism for measuring the “AUTO” and “FLUX_RADIUS” parameters for a given
object including a mask for neighboring sources. In addition to the mask, setting the SourceExtractor parameter
MASK_TYPE=CORRECT further fills the masked pixels of a given source with “good” pixel values reflected opposite
of the masked pixels. The SEP photometry and measurement functions provide an option for simple masking without
reflection or subtracting neighbor flux.

For example, using a segmentation array provided by sep.extract, we can compute the masked flux_radius
that could otherwise be artificially large due to flux from nearby sources:

list of object id numbers that correspond to the segments
seg_id = np.arange(1, len(objs)+1, dtype=np.int32)

r, flag = sep.flux_radius(data, objs['x'], objs['y'], 6.*objs['a'], 0.5,
seg_id=seg_id, seg=seg,
normflux=flux, subpix=5)

To enforce that a given measurement only includes pixels within a segment, provide negative values in the seg_id
list. Otherwise the mask for a given object will be pixels with (seg == 0) | (seg_id == id_i).

The following functions include the segmentation masking: sum_circle, sum_circann, sum_ellipse,
sum_ellipann, flux_radius , and kron_radius (winpos currently does not).

3.3.5 Masking image regions

Create a boolean array with elliptical regions set to True:

mask = np.zeros(data.shape, dtype=np.bool)
sep.mask_ellipse(mask, objs['x'], objs['y'], obs['a'], objs['b'],

objs['theta'], r=3.)

3.4 Reference/API

Background estimation & source detection

sep.Background(data[, mask, maskthresh, bw,
. . .])

Representation of spatially variable image background
and noise.

sep.extract(data, thresh[, err, mask, . . .]) Extract sources from an image.

3.4.1 sep.Background

class sep.Background(data, mask=None, maskthresh=0.0, bw=64, bh=64, fw=3, fh=3, fthresh=0.0)
Representation of spatially variable image background and noise.

Parameters

data [2-d ndarray] Data array.

mask [2-d ndarray, optional] Mask array, optional

maskthresh [float, optional] Mask threshold. This is the inclusive upper limit on the mask value
in order for the corresponding pixel to be unmasked. For boolean arrays, False and True are

3.4. Reference/API 19

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sep Documentation, Release 1.1.1

interpreted as 0 and 1, respectively. Thus, given a threshold of zero, True corresponds to
masked and False corresponds to unmasked.

bw, bh [int, optional] Size of background boxes in pixels. Default is 64.

fw, fh [int, optional] Filter width and height in boxes. Default is 3.

fthresh [float, optional] Filter threshold. Default is 0.0.

__init__(data, mask=None, maskthresh=0.0, bw=64, bh=64, fw=3, fh=3, fthresh=0.0)

Methods

back([dtype]) Create an array of the background.
rms([dtype]) Create an array of the background rms.
subfrom(data) Subtract the background from an existing array.

Attributes

globalback Global background level.
globalrms Global background RMS.

back(dtype=None)
Create an array of the background.

Parameters

dtype [dtype, optional] Data type of output array. Default is the dtype of the original data.

Returns

back [ndarray] Array with same dimensions as original data.

globalback
Global background level.

globalrms
Global background RMS.

rms(dtype=None)
Create an array of the background rms.

Parameters

dtype [dtype, optional] Data type of output array. Default is the dtype of the original data.

Returns

rms [ndarray] Array with same dimensions as original data.

subfrom(data)
Subtract the background from an existing array.

Like data = data - bkg, but avoids making a copy of the data.

Parameters

data [ndarray] Input array, which will be updated in-place. Shape must match that of the
original image used to measure the background.

20 Chapter 3. Usage Guide

https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.dtype.html#numpy.dtype
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sep Documentation, Release 1.1.1

3.4.2 sep.extract

sep.extract(data, thresh, err=None, mask=None, minarea=5, filter_kernel=default_kernel,
filter_type=’matched’, deblend_nthresh=32, deblend_cont=0.005, clean=True,
clean_param=1.0, segmentation_map=False)

Extract sources from an image.

Parameters

data [ndarray] Data array (2-d).

thresh [float] Threshold pixel value for detection. If an err or var array is not given, this
is interpreted as an absolute threshold. If err or var is given, this is interpreted as a
relative threshold: the absolute threshold at pixel (j, i) will be thresh * err[j, i] or
thresh * sqrt(var[j, i]).

err, var [float or ndarray, optional] Error or variance (specify at most one). This can be used
to specify a pixel-by-pixel detection threshold; see “thresh” argument.

gain [float, optional] Conversion factor between data array units and poisson counts. This does
not affect detection; it is used only in calculating Poisson noise contribution to uncertainty
parameters such as errx2. If not given, no Poisson noise will be added.

mask [ndarray, optional] Mask array. True values, or numeric values greater than
maskthresh, are considered masked. Masking a pixel is equivalent to setting data to
zero and noise (if present) to infinity.

maskthresh [float, optional] Threshold for a pixel to be masked. Default is 0.0.

minarea [int, optional] Minimum number of pixels required for an object. Default is 5.

filter_kernel [ndarray or None, optional] Filter kernel used for on-the-fly filtering (used to
enhance detection). Default is a 3x3 array: [[1,2,1], [2,4,2], [1,2,1]]. Set to None to skip
convolution.

filter_type [{‘matched’, ‘conv’}, optional] Filter treatment. This affects filtering behavior when
a noise array is supplied. 'matched' (default) accounts for pixel-to-pixel noise in the filter
kernel. 'conv' is simple convolution of the data array, ignoring pixel-to-pixel noise across
the kernel. 'matched' should yield better detection of faint sources in areas of rapidly
varying noise (such as found in coadded images made from semi-overlapping exposures).
The two options are equivalent when noise is constant.

deblend_nthresh [int, optional] Number of thresholds used for object deblending. Default is
32.

deblend_cont [float, optional] Minimum contrast ratio used for object deblending. Default is
0.005. To entirely disable deblending, set to 1.0.

clean [bool, optional] Perform cleaning? Default is True.

clean_param [float, optional] Cleaning parameter (see SExtractor manual). Default is 1.0.

segmentation_map [bool, optional] If True, also return a “segmentation map” giving the mem-
ber pixels of each object. Default is False.

Returns

objects [ndarray] Extracted object parameters (structured array). Available fields are:

• thresh (float) Threshold at object location.

• npix (int) Number of pixels belonging to the object.

• tnpix (int) Number of pixels above threshold (unconvolved data).

3.4. Reference/API 21

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sep Documentation, Release 1.1.1

• xmin, xmax (int) Minimum, maximum x coordinates of pixels.

• ymin, ymax (int) Minimum, maximum y coordinates of pixels.

• x, y (float) object barycenter (first moments).

• x2, y2, xy (float) Second moments.

• errx2, erry2, errxy (float) Second moment errors. Note that these will be zero if
error is not given.

• a, b, theta (float) Ellipse parameters, scaled as described by Section 8.4.2 in “The
Source Extractor Guide” or Section 10.1.5-6 of v2.13 of SExtractor’s User Manual.

• cxx, cyy, cxy (float) Alternative ellipse parameters.

• cflux (float) Sum of member pixels in convolved data.

• flux (float) Sum of member pixels in unconvolved data.

• cpeak (float) Peak value in convolved data.

• peak (float) Peak value in unconvolved data.

• xcpeak, ycpeak (int) Coordinate of convolved peak pixel.

• xpeak, ypeak (int) Coordinate of unconvolved peak pixel.

• flag (int) Extraction flags.

segmap [ndarray, optional] Array of integers with same shape as data. Pixels not belonging
to any object have value 0. All pixels belonging to the i-th object (e.g., objects[i])
have value i+1. Only returned if segmentation_map=True.

Aperture photometry

sep.sum_circle(data, x, y, r[, err, var, . . .]) Sum data in circular aperture(s).
sep.sum_circann(data, x, y, rin, rout[, . . .]) Sum data in circular annular aperture(s).
sep.sum_ellipse(data, x, y, a, b, theta, r) Sum data in elliptical aperture(s).
sep.sum_ellipann(data, x, y, a, b, theta, . . .) Sum data in elliptical annular aperture(s).

3.4.3 sep.sum_circle

sep.sum_circle(data, x, y, r, err=None, var=None, mask=None, maskthresh=0.0, segmap=None,
seg_id=None, bkgann=None, gain=None, subpix=5)

Sum data in circular aperture(s).

Parameters

data [ndarray] 2-d array to be summed.

x, y, r [array_like] Center coordinates and radius (radii) of aperture(s). x corresponds to the
second (“fast”) axis of the input array and y corresponds to the first (“slow”) axis. x, y =
(0.0, 0.0) corresponds to the center of the first element of the array. These inputs obey
numpy broadcasting rules.

err, var [float or ndarray] Error or variance (specify at most one).

mask [ndarray, optional] Mask array. If supplied, a given pixel is masked if its value is
greater than maskthresh.

maskthresh [float, optional] Threshold for a pixel to be masked. Default is 0.0.

22 Chapter 3. Usage Guide

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sep Documentation, Release 1.1.1

segmap [ndarray, optional] Segmentation image with dimensions of data and dtype np.
int32. This is an optional input and corresponds to the segmentation map output by
extract.

seg_id [array_like, optional] Array of segmentation ids used to mask additional pixels in the
image. Dimensions correspond to the dimensions of x and y. The behavior differs depend-
ing on whether seg_id is negative or positive. If seg_id is positive, all pixels belonging
to other objects are masked. (Pixel j, i is masked if seg[j, i] != seg_id and
seg[j, i] != 0). If seg_id is negative, all pixels other than those belonging to the
object of interest are masked. (Pixel j, i is masked if seg[j, i] != -seg_id). NB:
must be included if ‘‘segmap‘ is provided.

bkgann [tuple, optional] Length 2 tuple giving the inner and outer radius of a “background
annulus”. If supplied, the background is estimated by averaging unmasked pixels in this
annulus. If supplied, the inner and outer radii obey numpy broadcasting rules along with x,
y and r.

gain [float, optional] Conversion factor between data array units and poisson counts, used in
calculating poisson noise in aperture sum. If None (default), do not add poisson noise.

subpix [int, optional] Subpixel sampling factor. If 0, exact overlap is calculated. Default is 5.

Returns

sum [ndarray] The sum of the data array within the aperture.

sumerr [ndarray] Error on the sum.

flags [ndarray] Integer giving flags. (0 if no flags set.)

3.4.4 sep.sum_circann

sep.sum_circann(data, x, y, rin, rout, err=None, var=None, mask=None, maskthresh=0.0, seg_id=None,
segmap=None, gain=None, subpix=5)

Sum data in circular annular aperture(s).

Parameters

data [ndarray] 2-d array to be summed.

x, y, rin, rout [array_like] Center coordinates and inner and outer radii of aperture(s). x corre-
sponds to the second (“fast”) axis of the input array and y corresponds to the first (“slow”)
axis. x, y = (0.0, 0.0) corresponds to the center of the first element of the array.
These inputs obey numpy broadcasting rules. It is required that rout >= rin >= 0.0.

err, var [float or ndarray] Error or variance (specify at most one).

mask [ndarray, optional] Mask array. If supplied, a given pixel is masked if its value is
greater than maskthresh.

maskthresh [float, optional] Threshold for a pixel to be masked. Default is 0.0.

segmap [ndarray, optional] Segmentation image with dimensions of data and dtype np.
int32. This is an optional input and corresponds to the segmentation map output by
extract.

seg_id [array_like, optional] Array of segmentation ids used to mask additional pixels in the
image. Dimensions correspond to the dimensions of x and y. The behavior differs depend-
ing on whether seg_id is negative or positive. If seg_id is positive, all pixels belonging
to other objects are masked. (Pixel j, i is masked if seg[j, i] != seg_id and
seg[j, i] != 0). If seg_id is negative, all pixels other than those belonging to the

3.4. Reference/API 23

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sep Documentation, Release 1.1.1

object of interest are masked. (Pixel j, i is masked if seg[j, i] != -seg_id). NB:
must be included if ‘‘segmap‘ is provided.

gain [float, optional] Conversion factor between data array units and poisson counts, used in
calculating poisson noise in aperture sum. If None (default), do not add poisson noise.

subpix [int, optional] Subpixel sampling factor. Default is 5.

Returns

sum [ndarray] The sum of the data array within the aperture.

sumerr [ndarray] Error on the sum.

flags [ndarray] Integer giving flags. (0 if no flags set.)

3.4.5 sep.sum_ellipse

sep.sum_ellipse(data, x, y, a, b, theta, r, err=None, var=None, mask=None, maskthresh=0.0,
seg_id=None, segmap=None, bkgann=None, gain=None, subpix=5)

Sum data in elliptical aperture(s).

Parameters

data [ndarray] 2-d array to be summed.

x, y [array_like] Center coordinates and radius (radii) of aperture(s). x corresponds to the sec-
ond (“fast”) axis of the input array and y corresponds to the first (“slow”) axis. x, y =
(0.0, 0.0) corresponds to the center of the first element of the array. These inputs obey
numpy broadcasting rules.

a, b, theta [array_like] Ellipse parameters. These inputs, along with x, y, and r, obey numpy
broadcasting rules. a is the semi-major axis, b is the semi-minor axis and theta is angle
in radians between the positive x axis and the major axis. It must be in the range [-pi/2,
pi/2]. It is also required that a >= b >= 0.0.

r [array_like, optional] Scaling factor for the semi-minor and semi-major axes. The actual
ellipse used will have semi-major axis a * r and semi-minor axis b * r. Setting this
parameter to a value other than 1.0 is exactly equivalent to scaling both a and b by the same
value. Default is 1.0.

err, var [float or ndarray] Error or variance (specify at most one).

mask [ndarray, optional] Mask array. If supplied, a given pixel is masked if its value is
greater than maskthresh.

maskthresh [float, optional] Threshold for a pixel to be masked. Default is 0.0.

segmap [ndarray, optional] Segmentation image with dimensions of data and dtype np.
int32. This is an optional input and corresponds to the segmentation map output by
extract.

seg_id [array_like, optional] Array of segmentation ids used to mask additional pixels in the
image. Dimensions correspond to the dimensions of x and y. The behavior differs depend-
ing on whether seg_id is negative or positive. If seg_id is positive, all pixels belonging
to other objects are masked. (Pixel j, i is masked if seg[j, i] != seg_id and
seg[j, i] != 0). If seg_id is negative, all pixels other than those belonging to the
object of interest are masked. (Pixel j, i is masked if seg[j, i] != -seg_id). NB:
must be included if ‘‘segmap‘ is provided.

24 Chapter 3. Usage Guide

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sep Documentation, Release 1.1.1

bkgann [tuple, optional] Length 2 tuple giving the inner and outer radius of a “background
annulus”. If supplied, the background is estimated by averaging unmasked pixels in this
annulus. If supplied, the inner and outer radii obey numpy broadcasting rules, along with x,
y, and ellipse parameters.

gain [float, optional] Conversion factor between data array units and poisson counts, used in
calculating poisson noise in aperture sum. If None (default), do not add poisson noise.

subpix [int, optional] Subpixel sampling factor. Default is 5.

Returns

sum [ndarray] The sum of the data array within the aperture.

sumerr [ndarray] Error on the sum.

flags [ndarray] Integer giving flags. (0 if no flags set.)

3.4.6 sep.sum_ellipann

sep.sum_ellipann(data, x, y, a, b, theta, rin, rout, err=None, var=None, mask=None, maskthresh=0.0,
gain=None, subpix=5)

Sum data in elliptical annular aperture(s).

Parameters

data [ndarray] 2-d array to be summed.

x, y [array_like] Center coordinates and radius (radii) of aperture(s). x corresponds to the sec-
ond (“fast”) axis of the input array and y corresponds to the first (“slow”) axis. x, y =
(0.0, 0.0) corresponds to the center of the first element of the array. These inputs obey
numpy broadcasting rules.

a, b, theta, rin, rout [array_like] Elliptical annulus parameters. These inputs, along with x and
y, obey numpy broadcasting rules. a is the semi-major axis, b is the semi-minor axis and
theta is angle in radians between the positive x axis and the major axis. It must be in the
range [-pi/2, pi/2]. It is also required that a >= b >= 0.0 and rout >= rin
>= 0.0

err, var [float or ndarray] Error or variance (specify at most one).

mask [ndarray, optional] Mask array. If supplied, a given pixel is masked if its value is
greater than maskthresh.

maskthresh [float, optional] Threshold for a pixel to be masked. Default is 0.0.

gain [float, optional] Conversion factor between data array units and poisson counts, used in
calculating poisson noise in aperture sum. If None (default), do not add poisson noise.

segmap [ndarray, optional] Segmentation image with dimensions of data and dtype np.
int32. This is an optional input and corresponds to the segmentation map output by
extract.

seg_id [array_like, optional] Array of segmentation ids used to mask additional pixels in the
image. Dimensions correspond to the dimensions of x and y. The behavior differs depend-
ing on whether seg_id is negative or positive. If seg_id is positive, all pixels belonging
to other objects are masked. (Pixel j, i is masked if seg[j, i] != seg_id and
seg[j, i] != 0). If seg_id is negative, all pixels other than those belonging to the
object of interest are masked. (Pixel j, i is masked if seg[j, i] != -seg_id). NB:
must be included if ‘‘segmap‘ is provided.

subpix [int, optional] Subpixel sampling factor. Default is 5.

3.4. Reference/API 25

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sep Documentation, Release 1.1.1

Returns

sum [ndarray] The sum of the data array within the aperture(s).

sumerr [ndarray] Error on the sum.

flags [ndarray] Integer giving flags. (0 if no flags set.)

Aperture utilities

sep.kron_radius(data, x, y, a, b, theta, r) Calculate Kron “radius” within an ellipse.
sep.flux_radius(data, x, y, rmax, frac[, . . .]) Return radius of a circle enclosing requested fraction of

total flux.
sep.winpos(data, xinit, yinit, sig[, mask, . . .]) Calculate more accurate object centroids using ‘win-

dowed’ algorithm.
sep.mask_ellipse(arr, x, y, a, b, theta[, r]) Mask ellipse(s) in an array.
sep.ellipse_axes(cxx, cyy, cxy) Convert from coefficient ellipse representation to ellipse

axes and angle.
sep.ellipse_coeffs(a, b, theta) Convert from ellipse axes and angle to coefficient repre-

sentation.

3.4.7 sep.kron_radius

sep.kron_radius(data, x, y, a, b, theta, r, mask=None, maskthresh=0.0, seg_id=None, segmap=None)
Calculate Kron “radius” within an ellipse.

The Kron radius is given by ∑︁
𝑖

𝑟𝑖𝐼(𝑟𝑖)/
∑︁
𝑖

𝐼(𝑟𝑖)

where the sum is over all pixels in the aperture and the radius is given in units of a and b: r_i is the distance
to the pixel relative to the distance to the ellipse specified by a, b, theta. Equivalently, after converting the
ellipse parameters to their coefficient representation, r_i is given by

𝑟2𝑖 = 𝑐𝑥𝑥(𝑥𝑖 − 𝑥)2 + 𝑐𝑦𝑦(𝑦𝑖 − 𝑦)2 + 𝑐𝑥𝑥(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦)

Parameters

data [ndarray] Data array.

x, y [array_like] Ellipse center(s).

a, b, theta [array_like] Ellipse parameters.

r [array_like] “Radius” of ellipse over which to integrate. If the ellipse extent correponds to
second moments of an object, this is the number of “isophotal radii” in Source Extractor
parlance. A Fixed value of 6 is used in Source Extractor.

mask [numpy.ndarray, optional] An optional mask.

maskthresh [float, optional] Pixels with mask > maskthresh will be ignored.

segmap [ndarray, optional] Segmentation image with dimensions of data and dtype np.
int32. This is an optional input and corresponds to the segmentation map output by
extract.

seg_id [array_like, optional] Array of segmentation ids used to mask additional pixels in the
image. Dimensions correspond to the dimensions of x and y. The behavior differs depend-
ing on whether seg_id is negative or positive. If seg_id is positive, all pixels belonging

26 Chapter 3. Usage Guide

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sep Documentation, Release 1.1.1

to other objects are masked. (Pixel j, i is masked if seg[j, i] != seg_id and
seg[j, i] != 0). If seg_id is negative, all pixels other than those belonging to the
object of interest are masked. (Pixel j, i is masked if seg[j, i] != -seg_id). NB:
must be included if ‘‘segmap‘ is provided.

Returns

kronrad [array_like] The Kron radius.

flag [array_like] Integer value indicating conditions about the aperture or how many masked
pixels it contains.

3.4.8 sep.flux_radius

sep.flux_radius(data, x, y, rmax, frac, normflux=None, mask=None, maskthresh=0.0, subpix=5)
Return radius of a circle enclosing requested fraction of total flux.

Parameters

data [ndarray] 2-d array to be summed.

x, y [array_like] Center coordinates and radius (radii) of aperture(s). x corresponds to the sec-
ond (“fast”) axis of the input array and y corresponds to the first (“slow”) axis. x, y
= (0.0, 0.0) corresponds to the center of the first element of the array. Shapes must
match.

rmax [array_like] Maximum radius to analyze. Used as normalizing flux if normflux is
None. Shape must match x and y.

frac [array_like] Requested fraction of light (in range 0 to 1). Can be scalar or array.

normflux [array_like, optional] Normalizing flux for each position. If not given, the sum within
rmax is used as the normalizing flux. If given, shape must match x, y and rmax.

mask [ndarray, optional] Mask array. If supplied, a given pixel is masked if its value is
greater than maskthresh.

maskthresh [float, optional] Threshold for a pixel to be masked. Default is 0.0.

segmap [ndarray, optional] Segmentation image with dimensions of data and dtype np.
int32. This is an optional input and corresponds to the segmentation map output by
extract.

seg_id [array_like, optional] Array of segmentation ids used to mask additional pixels in the
image. Dimensions correspond to the dimensions of x and y. The behavior differs depend-
ing on whether seg_id is negative or positive. If seg_id is positive, all pixels belonging
to other objects are masked. (Pixel j, i is masked if seg[j, i] != seg_id and
seg[j, i] != 0). If seg_id is negative, all pixels other than those belonging to the
object of interest are masked. (Pixel j, i is masked if seg[j, i] != -seg_id). NB:
must be included if ‘‘segmap‘ is provided.

subpix [int, optional] Subpixel sampling factor. Default is 5.

Returns

radius [ndarray] The sum of the data array within the aperture(s). Shape is same as x,
except if frac is an array; then the dimension of frac will be appended. For example, if
x and frac are both 1-d arrays, the result will be a 2-d array with the trailing dimension
corresponding to frac.

flags [ndarray] Integer giving flags. Same shape as x. (0 if no flags set.)

3.4. Reference/API 27

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sep Documentation, Release 1.1.1

3.4.9 sep.winpos

sep.winpos(data, xinit, yinit, sig, mask=None, maskthresh=0.0, subpix=11, minsig=2.0/2.35*0.5)
Calculate more accurate object centroids using ‘windowed’ algorithm.

Starting from the supplied initial center position, an iterative algorithm is used to determine a better object
centroid. On each iteration, the centroid is calculated using all pixels within a circular aperture of 4*sig from
the current position, weighting pixel positions by their flux and the amplitude of a 2-d Gaussian with sigma sig.
Iteration stops when the change in position falls under some threshold or a maximum number of iterations is
reached. This is equivalent to XWIN_IMAGE and YWIN_IMAGE parameters in Source Extractor (for the correct
choice of sigma for each object).

Note: One should be cautious about using windowed positions in crowded fields or for sources with nearby
neighbors, as the iterative algorithm can fail catastrophically.

Parameters

data [ndarray] Data array.

xinit, yinit [array_like] Initial center(s).

sig [array_like] Gaussian sigma used for weighting pixels. Pixels within a circular aperture of
radius 4*sig are included.

mask [numpy.ndarray, optional] An optional mask.

maskthresh [float, optional] Pixels with mask > maskthresh will be ignored.

subpix [int, optional] Subpixel sampling used to determine pixel overlap with aperture. 11 is
used in Source Extractor. For exact overlap calculation, use 0.

minsig [float, optional] Minimum bound on sig parameter. sig values smaller than this are
increased to minsig to replicate Source Extractor behavior. Source Extractor uses a mini-
mum half-light radius of 0.5 pixels, equivalent to a sigma of 0.5 * 2.0 / 2.35.

Returns

x, y [np.ndarray] New x and y position(s).

flag [np.ndarray] Flags.

3.4.10 sep.mask_ellipse

sep.mask_ellipse(arr, x, y, a, b, theta, r=1.0)
Mask ellipse(s) in an array.

Set array elements to True (or 1) if they fall within the given ellipse. The r keyword can be used to scale the
ellipse. Equivalently, after converting a, b, theta to a coefficient ellipse representation (cxx, cyy, cxy),
pixels that fulfill the condition

𝑐𝑥𝑥(𝑥𝑖 − 𝑥)2 + 𝑐𝑦𝑦(𝑦𝑖 − 𝑦)2 + 𝑐𝑥𝑥(𝑥𝑖 − 𝑥)(𝑦𝑖 − 𝑦) < 𝑟2

will be masked.

Parameters

arr [ndarray] Input array to be masked. Array is updated in-place.

x, y [array_like] Center of ellipse(s).

a, b, theta [array_like, optional] Parameters defining the extent of the ellipe(s).

28 Chapter 3. Usage Guide

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sep Documentation, Release 1.1.1

cxx, cyy, cxy [array_like, optional] Alternative ellipse representation. Can be used as
mask_ellipse(arr, x, y, cxx=..., cyy=..., cxy=...).

r [array_like, optional] Scale factor of ellipse(s). Default is 1.

3.4.11 sep.ellipse_axes

sep.ellipse_axes(cxx, cyy, cxy)
Convert from coefficient ellipse representation to ellipse axes and angle.

Parameters

cxx, cyy, cxy [array_like] Describes the ellipse(s) cxx * x**2 + cyy * y**2 + cxy

* x * y = 1

Returns

a, b, theta [ndarray] Ellipse(s) semi-major, semi-minor axes and position angle respectively.
Position angle is radians counter clockwise from positive x axis to major axis, and lies in
range (-pi/2, pi/2)

Raises

ValueError If input parameters do not describe an ellipse.

3.4.12 sep.ellipse_coeffs

sep.ellipse_coeffs(a, b, theta)
Convert from ellipse axes and angle to coefficient representation.

Parameters

a, b, theta [array_like] Ellipse(s) semi-major, semi-minor axes and position angle respectively.
Position angle is radians counter clockwise from positive x axis to major axis, and lies in
range [-pi/2, pi/2]

Returns

cxx, cyy, cxy [ndarray] Describes the ellipse(s) cxx * x^2 + cyy * y^2 + cxy *
xy = 1

Low-level utilities

sep.get_extract_pixstack() Get the size in pixels of the internal pixel buffer used in
extract().

sep.set_extract_pixstack(size) Set the size in pixels of the internal pixel buffer used in
extract().

sep.get_sub_object_limit() Get the limit on the number of sub-objects when de-
blending in extract().

sep.set_sub_object_limit(limit) Set the limit on the number of sub-objects when de-
blending in extract().

3.4.13 sep.get_extract_pixstack

sep.get_extract_pixstack()
Get the size in pixels of the internal pixel buffer used in extract().

3.4. Reference/API 29

https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray
https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html#numpy.ndarray

sep Documentation, Release 1.1.1

3.4.14 sep.set_extract_pixstack

sep.set_extract_pixstack(size)
Set the size in pixels of the internal pixel buffer used in extract().

The current value can be retrieved with get_extract_pixstack. The initial default is 300000.

3.4.15 sep.get_sub_object_limit

sep.get_sub_object_limit()
Get the limit on the number of sub-objects when deblending in extract().

3.4.16 sep.set_sub_object_limit

sep.set_sub_object_limit(limit)
Set the limit on the number of sub-objects when deblending in extract().

The current value can be retrieved with get_sub_object_limit. The initial default is 1024.

Flags

Flag Description
sep.OBJ_MERGED object is result of deblending
sep.OBJ_TRUNC object is truncated at image boundary
sep.OBJ_SINGU x, y fully correlated in object
sep.APER_TRUNC aperture truncated at image boundary
sep.APER_HASMASKED aperture contains one or more masked pixels
sep.APER_ALLMASKED aperture contains only masked pixels
sep.APER_NONPOSITIVE aperture sum is negative in kron_radius

To see if a given flag is set in flags:

is_merged = (flags & sep.OBJ_MERGED) != 0

Note: The coordinate convention in SEP is that (0, 0) corresponds to the center of the first element of the data array.
This agrees with the 0-based indexing in Python and C. However, note that this differs from the FITS convention where
the center of the first element is at coordinates (1, 1). As Source Extractor deals with FITS files, its outputs follow the
FITS convention. Thus, the coordinates from SEP will be offset from Source Extractor coordinates by -1 in x and y.

For complete API documentation, see Reference/API.

30 Chapter 3. Usage Guide

CHAPTER 4

Contributing

Report a bug or documentation issue: http://github.com/kbarbary/sep/issues

Development of SEP takes place on GitHub at http://github.com/kbarbary/sep. Contributions of bug fixes, documen-
tation improvements and minor feature additions are welcome via GitHub pull requests. For major features, it is best
to open an issue discussing the change first.

31

http://github.com/kbarbary/sep/issues
http://github.com/kbarbary/sep

sep Documentation, Release 1.1.1

32 Chapter 4. Contributing

CHAPTER 5

License and Citation

The license for SEP is the Lesser GNU Public License (LGPL), granted with the permission from the original author
of Source Extractor.

If you use SEP in a publication, please cite Barbary (2016) and the original Source Extractor paper: Bertin & Arnouts
1996.

The DOI for the sep v1.0.0 code release is 10.5281/zenodo.159035.

33

http://dx.doi.org/10.21105/joss.00058
http://adsabs.harvard.edu/abs/1996A%26AS..117..393B
http://adsabs.harvard.edu/abs/1996A%26AS..117..393B
http://dx.doi.org/10.5281/zenodo.159035

sep Documentation, Release 1.1.1

34 Chapter 5. License and Citation

Index

Symbols
__init__() (sep.Background method), 20

B
back() (sep.Background method), 20
Background (class in sep), 19

E
ellipse_axes() (in module sep), 29
ellipse_coeffs() (in module sep), 29
extract() (in module sep), 21

F
flux_radius() (in module sep), 27

G
get_extract_pixstack() (in module sep), 29
get_sub_object_limit() (in module sep), 30
globalback (sep.Background attribute), 20
globalrms (sep.Background attribute), 20

K
kron_radius() (in module sep), 26

M
mask_ellipse() (in module sep), 28

R
rms() (sep.Background method), 20

S
set_extract_pixstack() (in module sep), 30
set_sub_object_limit() (in module sep), 30
subfrom() (sep.Background method), 20
sum_circann() (in module sep), 23
sum_circle() (in module sep), 22
sum_ellipann() (in module sep), 25
sum_ellipse() (in module sep), 24

W
winpos() (in module sep), 28

35

	About
	Installation
	Usage Guide
	Contributing
	License and Citation
	Index

